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Abstract-The method of matched asymptotic expansions is used to reduce the problem of the transverse
vibrations of a highly prestressed anisotropic plate into the simpler problem of the vibration of an
anisotropic membrane with modified boundary conditions that account for the bending effects. In the
absence of an exact solution the membrane problem can be solved by any well-known numerical technique.
The numerical-perturbation results for a clamped circular plate with rectangular orthotropy and a uniform
tensile stress applied on its boundary show an excellent correlation with finite-element solutions for the
original problem. Furthermore, the solutions obtained for annular plates form the basis for solutions to
problems involving near-annular plates.

1. INTRODUCTION

For a generally anisotropic circular plate, the material rigidities vary with the polar angle as well
as the radial direction. Closed form solutions for the transverse vibrations of such plates under
the action of general in-plane forces do not exist, and recourse has to be made to approximate
techniques such as numerical methods, perturbation methods, or combinations of both. Exact
solutions to the problem of the transverse vibrations of a uniformly prestressed isotropic plate
of circular or annular geometry are well-known fl]. The solutions of the problem under
consideration could be reduced to these known cases for comparison purposes. Approximate
solutions for anisotropic plates of regular geometries have been obtained by using Rayleigh
Ritz and Galerkin techniques [2).

When the applied loads are very large compared with Dftla*2, where Drt is the charac
teristic rigidity and a* is a characteristic dimension of the plate, a state of membrane
deformation prevails over the plate except in a thin layer next to the edge of the plate where a
state of bending deformation exists. If E = (Drt/N*a*2)tl2 ~ 1, where N* is a measure of the
applied inplane loads, the bending layer becomes thinner as E decreases.

When a purely numerical technique, such as the finite-element method[3], is attempted, the
entire plate is modelled by using a large number of bending elements to accurately simulate the
effects of the boundary conditions on the displacement and stress distributions, thereby not
exploiting the fact that a large portion of the plate behaves like a prestressed membrane. As
E -+ 0, more and more elements will be needed, resulting in a larger computational time. A
numerical-perturbation technique is proposed as an economical alternative for the treatment of
the vibrations of highly prestressed anisotropic plates of complex geometries. In the present
paper we develop the solutions for circular plates, which would form the basis for plates of
more complex geometries.

The perturbation method of matched asymptotic expansions[4] is used to reduce the
solution of the problem of the transverse vibrations of highly prestressed anisotropic plates to
the solution of the simpler problem, the transverse vibrations of membranes, but with modified
boundary conditions that account for the effects of bending. This simpler problem could then be
solved by using a numerical technique like the finite-element method. Since the membrane has
no bending rigidity only the geometric matrix is needed in a membrane element, While the
stiffness as well as the geometric matrices are needed in a bending element to model the effects
of in-plane forces on out-of-plane deformations. Moreover, since the governing equation in the
case of a vibrating membrane is a second-order partial differential equation, the geometric
matrix for this analysis can be based upon a lower-order polynomial for the out-of-plane
displacement function than that which would be used for vibrating plates. This then leads to a
reduction in the size of the geometric matrix for each element, which in turn implies a reduction
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of the total number of degrees of freedom of the assembled model. This technique has been
proposed for the problem of the transverse vibrations of highly prestressed variable thickness
plates [5].

2. PROBLEM FORMULATION

We consider linear transverse vibrations of a highly prestressed, midplane-symmetric,
circular plate with rectangular orthotropy. Since six independent elastic constants are required
for its constitutive description. such a plate is anisotropic. Midplane symmetry eliminates
bending-extensional coupling in the plate. The transverse vibrations are assumed to be small
enough for the effects of midplane stretching on the inplane loads to be neglected.

We introduce the radius of the plate a*, thickness of the plate h*, a characteristic period
T* = (p*h*a*4/Dt)1I2 and a characteristic load N* as reference quantities for writing down the
governing equation in dimensionless form. Thus, if starred and unstarred quantities denote
dimensional and dimensionless quantities respectively. we have:

w=w*/a*, t=t*/T*, r=r*/a*. h.=M/h*, Nrr=N-::'/N* (I)

where w is the transverse displacement. t is the time. r is the radial distance. e is the
circumferential coordinate. (hk - hk-l) is the thickness of the kth layer in the plate. the N ij are
the inplace load distributions. the Dij are the bending rigidities in rectangular form [2], and q is
the transverse loading on the plate. Using the bending moment-curvature relations{2] in the
equation describing the transverse vibrations of an anisotropic plate{6], and introducing the
dimensionless quantities, we obtain:

(3)

where

- 4 - 4 - - 4 - 4 - 4 - 3
wl_{DII !.....+~ D16_a_+~ (DI2+2D66) a+.! O26_a_+! 022 .!.....+~ DIl !.....
.,4- 4 3 2 223 34 4 3DI1 ar r Dtl ar a8 r Dli ar ae r Dli ara8 r DIl a8 r DII ar

(4)

(5)

(6)

where p*h* is the mass per unit area of the plate and Vij are transformed bending rigidities in
polar form. The inplane loads Nm N8I! and Nre are assumed to be known functions of rand 8.
These are the solutions of the plane stress problem which may be obtained numerically for any
given loading conditions.

To complete the problem formulation we specify the boundary conditions. For definiteness
we consider the case of a clamped circular plate for which

w o and aw == 0 at r == 1
or

w <00. (8)
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3. REDUCTION TO A MEMBRANE PROBLEM

Outer expansion
We seek an approximate solution, a so-called outer expansion or a membrane expansion as

described below, in the form:

(9)

Substituting eqn (9) into eqn (3) and equating coefficients of like powers of E on both sides, we
obtain

(10)

(11)

We note that the equations governing the wn(m) are of second order as opposed to the
original eqn (3) which is of fourth order. Hence the expansion (9) cannot be expected to satisfy,
in general, all the boundary conditions. Consequently, it is not valid near the plate edge.
Physically, there is a thin layer near the edge where bending deformations exist, and a state of
membrane deformation exists everywhere else for small E values. Across these edge layers the
displacement changes very rapidly from a membrane type to a bending type in order to satisfy
the boundary conditions [7-9].

Inner expansion near r = 1
A bending expansion that is valid in the edge layer is obtained through the method of

matched asymptotic expansions by using a stretching transformation:

(= (1- r)/E.

In this case we seek an expansion of the form:

(12)

(13)

Writing the original eqn (3) in terms of the stretched variable (, substituting (13) for w(i), and
collecting coefficients of powers of E, we have:

(14)

(15)

If we let (DlIN")/(DlI ) = f.L 2(8), the general solution of (14) can be expressed as

subject to the boundary conditions:

(17)

~s. wow is fi.nite and cannot grow exponentially, a4(8, t) must be zero. Using the boundary
conditions (17) 10 eqn (16), we obtain:
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(')
Wo r «(, 8, t) = at(8, t)[l- f.L(8)( - exp (-f.L(8W]. (18)
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This can be substituted into eqn (15) to get the general solution for WI1i\l, 0, [). But we choose
to apply the matching condition at this stage to evaluate al(O, t) which will be shown to be zero.
Hence the solution for wl(i)(l, 8, t) is obtained in a simpler fashion.

Matching
We match one-term inner expansion with two-term outer expansion by using the matching

principle

I-term inner (2-term outer) = 2-term outer (I-term inner)

2-term outer = wo1m)(r, 8, t) +EWI1m\r, fJ, t).

Rewritten in inner variable = wo1m1(1- El, 0, t) + EW/m1(l- El, 8, t).

Expanded for small E= wo(m)(l, 8, t) + E[ w\{m)(l, fJ, t) -lwb(ml(I, fJ, tn + O(E").

I-term inner of this = wo1m)(I, fJ, t) (19)

I-term inner = al(1- /Ll- exp (-/Ll)]

R .. . bl [ (I - r) I ]ewntten In outer vana e =al 1- fL-
E
-- exp [-fL(I- r) E]

Expanded for small E= a 1[l /L (I - r)to-II

2-term outer of this = -al/L(I- r)E -I +al.

Using the matching condition and equating coefficients of like powers of E, we have:

-al/L(I- r) = 0; i.e. al = 0 from E-I terms

al = wo(m)(1, 0, t) from EO terms.

Hence,

Using this in eqn (18) we see that

Substituting this result into equation (I5), we get

The boundary conditions are

Equations (23) and (24) have the same type of solution as for wow, namely,

So,

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Matching
Equation (21) gives the first modified boundary condition for the membrane problem. To get
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the second one, we use the following matching condition that includes Wl(i):

2·term inner (2-term outer) = 2-term outer (2-term inner)

2-term outer = wo(m)(r,8, t) +Ew/m)(r, 8, I).

Rewritten in inner variable = wo(m)(l- El, 8, t)+ EW1(m)(l- El, 8, t).

Expanded for small E = wo(m)(1, 8, 1)+E[Wt(m)(1, 8, t)-lwo(m)O, 8, t)] +O(e2
).

2.term inner (2-term outer) == wo(m)(l, 8, I) +E[Wt(m)(l, 8, t) - lwb(m)(I, 8, I)]

:::: E[wt(m)(l, 8, t)-lwb(m)(l, 8, t)] (27)

as wo{lft)(I, 8, t) = O.

2-term inner = wo(i)U, 8, t) +EWt(l)(l, 8, t)

:::: EWl(i)U, 8, t):::: Easll-lLl - exp (-ILl)]·

Rewritten in outer variable = E[1-/L(I- r)/E -exp (-JL(1- r)/.:)]«s.

Expanded for small E =-asp(l - r) +Eas

2-term outer (2-term inner) = -asp(l- r) +Eas. (28)

Using the matching condition, expressing El as (1- r) in eqn (27), and equating coefficients
of like powers of E, we obtain

- (1- r)wo(m)(l, 8, t) ~ - aslL(1- r)

or

wb(m)(l, 8, I) = /L(8)as(8, I) from EO terms

wr)(l, 8, t) =as(8, t) from E terms.

It follows from equations (29) and (30) that

(29)

(30)

(31)

Equations (21) and (31) are the modified boundary conditions subject to which the membrane
solution w(m) is obtained from eqns (9Hll).

Free vibrations
If free vibrations (q = 0) are considered and the solution is assumed to be harmonic with

respect to time,

If we let

eqns (9)-(11) yield

where

w(m){r, 8, t; E) = t/J{r, 8; E) exp (ilUt).

t/J(r, 8) = Mr, 8)+Et/JI(r, 8) + ...

!t24Jo+A2~= 0

!t2t/J1 +A2t/J] = 0

(32)

(33)

(34)

(35)
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Similarly the boundary conditions (21) and (31) become

«>0(1,8) = 0

«>\(1,8) = JL -\(8)«>b(1, 8).

(36)

(37)

The homogeneous eqns (33) and (34) subject to the boundary conditions (36) and (37) can
have only the trivial solution unless we expand the eigenvalue A as a function of E. That is,

This leads to

A= Ao+ EAt + .. '.

:£2«>0 + A0
2«>0 = 0

:£2«>\ + A02«>\ = -2AoA\«>0

(38)

(39)

(40)

subject to the boundary conditions (36) and (37).

Equation (39) subject to the condition (36) is an eigenvalue problem which yields an infinite
set of eigenvalues Aomn and eigenfunctions «>Omn. Equation (40) subject to the boundary
condition (37) can then be solved by expressing «>\ as a linear combination of these eigen
functions. The solvability condition for this problem enables us to evaluate AI and hence the
value of A to O(E) as expressed by eqn (38).

4. SPECIAL CASE

In the case of uniformly prestressed circular plates with rectangular orthotropy, the plane
stress solutions are:

N:;'=N~=N*

N:6= o.

That is, Nrr = N8IJ = 1 and N rlJ = O. In this case the :£2 operator reduces to the Laplacian
operator V2 as seen in equation (5). Then, eqns (39) and (40) may be written as:

v2«>0 + A02«>0 = 0

V2
«>1 + A02«>1 = -2AoA 1«>0.

The solution of eqn (41) subject to the boundary condition (36) can be written as

«>0 = bJm(Aomnr){A exp (im8) + Aexp (-im8)}

where A is an arbitrary complex constant, Aomn is the nth root of

and b is chosen such that
I

b2 LrJm
2(Aomnr) dr = I

or

(41)

(42)

(43)

(44)

(45)

Since the above eigenvalue problem has a nontrivial solution, the inhomogeneous eqn (42)
subject to the inhomogeneous boundary condition (37) has a nontrivial solution if, and only if, a
solvability condition is satisfied. This solvability condition furnishes the value of AI. To
determine this, we express «>\ as:

«>\(r, 8) = L I/Js(r) exp (is8).
s=-oo

(46)
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,=-Oll p, 0)
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Substituting for 4>0 and 4>1 into eqns (42) and (37), we have:

S~Oll [",~+; ",~+ (A~mn- ~) ",.] exp(isO) = -2AomnA1b Jm(Aomnr){A exp (imO)+Aexp(-imO)}

(47)

(48)

Multiplying eqns (41) and (48) by exp (-imO) and integrating the results from 0 = 0 to 0 = 21T,
we obtain

where

and

2

",::.+; ",,;.+ (A~mn- ~2 )"'m = -2AomnAlbAJm(Aomnr)

"'m(1) = bAomJ';'(Aomn){Ago + Ag2m }

1 1211

1
go = 21T 0 p,(0) dO

__1 1211
exp (-i2mO) dO

g2m - 21T 0 p,(0) .

(49)

(50)

(51)

The problem of determining the solvability condition for eqns (42) and (31) is thus reduced
to that of determining the solvability condition of eqns (49) and (50). To accomplish this,
multiply eqn (49) by ru(r), integrate the result by parts from r =0 to r =1, and obtain

1 2 I

[ru(r)"'';'- ru'(r)"'m]~+ fa "'m(r) [(ru')'+ (A~mnr- ~ ) u] dr= -2AomnA1Ab2fa rJm2(Aomnr) dr.

We choose u(r) to be a solution of the adjoint homogeneous problem; that is

u(r) = bJm(Aomnr).

Then,

Using eqn (50) and the fact that u(l) = O. we obtain

or

Hence

As A = acu we have

acumn = Amn =Aomn[l + 2E(go+ AA-lg2m )]112 + ...

""'Aomn[l + E(go+ AA-1g2m )] + .. '.

Here Aomn is. the nth zero of the Bessel function of the first kind and mth order.
Letting

A =~ 'Y exp (if3) and g2m =U2m exp (iT)

(52)

(53)

(54)

(55)

(56)



1044 R. L. RAMKUMAR et al.

where ')', {3, 0'2m, and T are real constants, in eqn (55), we have

aWmn "" Aomn{I + E[go + 0'2m exp (i[T - 2{3])]} + .. '.

As Wmn have to be real for a stable solution, we require

(T - 2(3) = 0 or 1T.

(57)

(58)

That is, {3 = 1/2T, or (3 = l/2(T- 1T). This leads to the splitting of the frequency of vibration of
the plate. Substituting eqn (58) into eqn (57), we have

aWmn "" Aomn [1 +E(go ± 0'2m)] +.. '. (59)

The solution (59) reduces to that in [5] for an isotropic plate.
The solutions for a boron-epoxy plate are obtained for high prestress values using the

perturbation solution (59). These are compared with finite-element solutions. Table 1 shows
good agreement between the two sets of results for E "" 0.1. As E decreases from this value the
accuracy of the finite-element solution tends to deteriorate. On the other hand, as E increases
from 0.1, the accuracy of the numerical-perturbation technique tends to deteriorate.

Table I. Correlation between perturbation solutions and finite-element solu
tions for a boron-epoxy circular plate

0.01
0.025
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.8

Finite-element
method

2.5062
2.5313
2.5841
2.7055
2.9987
3.3526
3.7563
4.1991
4.6729
5.6887

aWmn
Numerical-perturbation

method

2.4337
2.4770
2.5493
2.6938
2.9827
3.2717
3.5606
3.8496
4.1386
4.7165

%
Difference

2.89
2.42
1.35
0.40
0.53
2.41
5.21
8.32

11.40
17.10

5. CONCLUSIONS

A numerical-perturbation technique has been proposed for the analysis of the transverse
vibrations of highly prestressed anisotropic plates of circular geometry. Excellent correlation is
observed between the numerical-perturbation solutions and the finite-element solutions for a
boron-epoxy plate. This analysis of circular plates with rectangular orthotropy can accomodate
any general anisotropic plate with known variations of the material properties. Furthermore, the
solutions for annular anisotropic plates would form the basis for solutions to transverse
vibrations of near circular, highly .prestressed, annular plates [l0].
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